skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kelley, AL"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The global ocean is expected to both acidify and warm concurrently; thus, multiple-stressor manipulative experimentation is an emergent area of study that ultimately aims to examine the individual and interactive effects of these factors on marine organisms. We characterized the physiological responses to acidification and warming of the intertidal grazerLottia scutum, and examined how these ocean change variables influenced predator-prey dynamics withEvasterias troschelii,a key sea star predator. Specifically, we conducted a laboratory experiment where we exposed limpets to factorial combinations of temperature (11 and 15°C) and pH (7.6 and 8.0), and measured effects on thermal tolerance, metabolic rate, cortisol concentrations, and behavioral responses to the predator. We found that ocean warming (OW) decreased the critical thermal maxima (CTmax) and increased cortisol levels inL. scutum, whereas ocean acidification (OA) increased the mass-specific metabolic rate in this species. Additionally, we found that there was no significant effect of OA or OW on the anti-predator behavior ofL. scutumwhen exposed toE. troschelii. These results highlight the need for future studies to integrate multidisciplinary experimental designs (i.e. behavior and physiology) that span multiple levels of biological organization to make ecologically relevant predictions for how marine organisms will respond to ocean change. 
    more » « less